Molecular Factories Based on Artificial Metalloenzymes - NCCR MSE

Molecular Factories Based on Artificial Metalloenzymes

Artificial metalloenzymes as components of molecular factories: Introduction of a catalytically active organometallic cofactor ball and stick representation within a protein host (e.g. baseball glove) affords an artificial metalloenzymes a variety of bio-orthogonal transformations. Current efforts are aimed at performing catalysis within a cellular environment.
Artificial metalloenzymes as components of molecular factories: Introduction of a catalytically active organometallic cofactor ball and stick representation within a protein host (e.g. baseball glove) affords an artificial metalloenzymes a variety of bio-orthogonal transformations. Current efforts are aimed at performing catalysis within a cellular environment.

Strategies to integrate and exploit artificial metalloenzymes within mammalian cells for biomedical applications.

With synthetic biology applications in mind, attempts to exploit organometallic catalysts within a cellular environment have been met with limited success. Thanks to their know-how in organometallic- and bioinorganic chemistry with an emphasis on catalysis, this group has pioneered the field of artificial metalloenzymes (ArMs) based on the non-covalent incorporation of a catalytically competent organometallic cofactor within a host protein. The resulting hybrid catalysts display features which are reminiscent of both homogeneous- and enzymatic catalysts. 

With biomedical applications in mind, the main challenge to be addressed within the NCCR Molecular Systems Engineering is the integration of ArMs within mammalian cells. The ultimate goal of this effort is to complement natural enzymes for the on-site production or uncaging of drugs and for diagnosis purposes. The bio-orthogonality of some of the ArMs developed within the group allows to complement the natural reaction repertoire. To integrate artificial metalloenzymes within mammalian cells, the following strategies will be investigated: i) encapsulation within polymerosomes or ii) incorporation of cell-penetrating disulfides on ArMs. Alternatively host proteins overexpressed on the cell surface of diseased cells will be exploited to accumulate organometallic cofactors which can uncage drugs and accumulate drugs where needed.


S. Hirschi, T. R. Ward, W. P. Meier, D. J. MüllerD. Fotiadis “Synthetic Biology: Bottom-Up Assembly of Molecular Systems“ Chem. Rev. 2022. [DOI]
J. Vallapurackal, A. Stucki, A. D. Liang, J. Klehr, P. DittrichT. R. Ward “Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions“ Angew. Chem. Int. Ed. 2022. [DOI]
M. R. Schreier, X. Guo, B. Pfund, Y. Okamoto, T. R. Ward, C. Kerzig, O. Wenger “Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry“ Acc. Chem. Res. 2022. [DOI]
A. Stein, A. D. Liang, R. Sahin, T. R. Ward “Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination“ J. Organomet. Chem. 2022. [DOI]
C. Miró-Vinyals, A. Stein, S. Fischer, T. R. Ward, A. Deliz Liang “HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye“ ChemBioChem 2021. [DOI]
A. Stein, D. Chen, N. V. Igareta, Y. Cotelle, J. G. Rebelein, T. R. Ward “A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase“ ACS Cent. Sci. 2021. [DOI]
A. Baiyoumy, J. Vallapurackal, F. Schwizer, T. Heinisch, T. Kardashliev, M. Held, S. PankeT. R. Ward “Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein“ ACS Catal. 2021. [DOI]
B. Lozhkin, T. R. Ward “Bioorthogonal strategies for the in vivo synthesis or release of drugs“ Bioorg. Med. Chem. 2021. [DOI]
F. Christoffel, N. V. Igareta, M. M. Pellizzoni, L. Tiessler-Sala, B. Lozhkin, D. C. Spiess, A. Lledós, J. Maréchal, R. L. Peterson, T. R. Ward “Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis“ Nat. Catal. 2021. [DOI]
S. Di Leone, J. Vallapurackal, S. Yorulmaz Avsar, M. Kyropolou, T. R. WardC. G. Palivan, W. Meier “Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers“ Biomacromolecules 2021. [DOI]
S. Fischer, T. R. Ward, A. D. Liang “Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on Halotag“ ACS Catal. 2021. [DOI]
A. Stucki, J. Vallapurackal, T. R. WardP. Dittrich “Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey“ Angew. Chem. Int. Ed. 2021. [DOI]
T. Vornholt, F. Christoffel, M. M. Pellizzoni, S. PankeT. R. Ward, M. Jeschek “Systematic Engineering of Artificial Metalloenzymes for New-to-Nature Reactions“ Sci. Adv. 2021. [DOI]
A. Samanta, V. Sabatino, T. R. Ward, A. Walther “Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes“ Nat. Nanotechnol. 2020. [DOI]
H. J. Davis, D. Häussinger, T. R. Ward, Y. Okamoto “A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex“ ChemCatChem 2020. [DOI]
V. Sabatino, D. Staub, T. R. Ward “Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis“ Catal. Lett. 2020. [DOI]
J. Serrano-Plana, C. Rumo, J. G. Rebelein, R. L. Peterson, M. Barnet, T. R. Ward “Enantioselective Hydroxylation of Benzylic C(sp3)–H Bonds by an Artificial Iron Hydroxylase Based on the Biotin–Streptavidin Technology“ J. Am. Chem. Soc. 2020. [DOI]
X. Guo, Y. Okamoto, M. R. Schreier, T. R. WardO. Wenger “Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis“ Eur. J. Org. Chem. 2020. [DOI]
S. Wu, Y. Zhou, D. Gerngross, M. Jeschek, T. R. Ward “Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources“ Nat. Commun. 2019. [DOI]
S. Wu, Y. Zhou, J. G. Rebelein, M. Kuhn, H. Mallin, J. Zhao, N. V. Igareta, T. R. Ward “Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes“ J. Am. Chem. Soc. 2019. [DOI]
V. Sabatino, J. G. Rebelein, T. R. Ward ““Close-to-Release”: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis“ J. Am. Chem. Soc. 2019. [DOI]
H. J. Davis, T. R. Ward “Artificial Metalloenzymes: Challenges and Opportunities“ ACS Cent. Sci. 2019, 5(7):1120-36. [DOI]
Y. Cheng, L. Zong, J. López-Andarias, E. Bartolami, Y. Okamoto, T. R. Ward, N. Sakai, S. Matile “Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks“ Angew. Chem. Int. Ed. 2019. [DOI]
J. G. Rebelein, Y. Cotelle, B. Garabedian, T. R. Ward “Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein“ ACS Catal. 2019. [DOI]
A. D. Liang, J. Serrano-Plana, R. L. Peterson, T. R. Ward “Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution“ Acc. Chem. Res. 2019. [DOI]
M. Szponarski, F. Schwizer, T. R. Ward, K. Gademann “On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme“ Commun. Chem. 2018. [DOI]
J. Zhao, J. G. Rebelein, H. Mallin, C. Trindler, M. M. Pellizzoni, T. R. Ward “Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm“ J. Am. Chem. Soc. 2018. [DOI]
M. Hestericová, T. Heinisch, M. Lenz, T. R. Ward “Ferritin Encapsulation of Artificial Metalloenzymes: Engineering a Tertiary Coordination Sphere for an Artificial Transfer Hydrogenase“ Dalton Trans. 2018. [DOI]
X. Guo, Y. Okamoto, M. R. Schreier, T. R. WardO. Wenger “Enantioselective synthesis of amines by combining photoredox and enzymatic catalysis in a cyclic reaction network“ Chem. Sci. 2018. [DOI]
Y. Okamoto, R. Kojima, F. Schwizer, E. Bartolami, T. Heinisch, S. MatileM. FusseneggerT. R. Ward “A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell“ Nat. Commun. 2018. [DOI]
J. Zhao, D. G. Bachmann, M. Lenz, D. G. Gillingham, T. R. Ward “An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin“ Catal. Sci. Technol. 2018. [DOI]
S. G. Keller, B. Probst, T. Heinisch, R. Alberto, T. R. Ward “Photo‐Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin‐Streptavidin Technology“ Helv. Chim. Acta 2018. [DOI]
H. Mallin, T. R. Ward “Streptavidin‐Enzyme Linked Aggregates for the One‐Step Assembly and Purification of Enzyme Cascades“ ChemCatChem 2018. [DOI]
J. G. Rebelein, T. R. Ward “In vivo catalyzed new-to-nature reactions“ Curr. Opin. Biotechnol. 2018. [DOI]
M. M. Pellizzoni, F. Schwizer, C. W. Wood, V. Sabatino, Y. Cotelle, S. Matile, D. N. Woolfson, T. R. Ward “Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes“ ACS Catal. 2018. [DOI]
T. Heinisch, F. Schwizer, B. Garabedian, E. Csibra, M. Jeschek, J. Vallapurackal, V. B. Pinheiro, P. Marlière, S. PankeT. R. Ward “E. coli surface display of streptavidin for directed evolution of an allylic deallylase“ Chem. Sci. 2018, 9(24):5383-5388. [DOI]
M. JeschekS. PankeT. R. Ward “Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism“ Trends Biotechnol. 2017. [DOI]
S. G. Keller, A. Pannwitz, H. Mallin, O. WengerT. R. Ward “Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation“ Chem. Eur. J. 2017. [DOI]
F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V. Lebrun, R. Reuter, V. Köhler, J. C. Lewis, T. R. Ward “Artificial Metalloenzymes: Reaction Scope and Optimization Strategies“ Chem. Rev. 2017. [DOI]
Y. OkamotoT. R. Ward “Cross-Regulation of an Artificial Metalloenzyme“ Angew. Chem. Int. Ed. 2017. [DOI]
L. Liu, Y. Cotelle, J. Klehr, N. Sakai, T. R. WardS. Matile “Anion-π catalysis: bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on π-acidic surfaces“ Chem. Sci. 2017, 8:3770-74. [DOI]
M. Jeschek, M. O. Bahls, V. Schneider, P. Marlière, T. R. WardS. Panke “Biotin-independent Strains of Escherichia coli for Enhanced Streptavidin Production“ Metab. Eng. 2017, 40:33-40. [DOI]
Z. Liu, V. Lebrun, T. Kitanosono, H. Mallin, V. Köhler, D. Häussinger, D. Hilvert, S. Kobayashi, T. R. Ward “Upregulation of an Artificial Zymogen by Proteolysis“ Angew. Chem. Int. Ed. 2016, 55:11587-90. [DOI]
M. Jeschek, R. Reuter, T. Heinisch, C. Trindler, J. Klehr, S. PankeT. R. Ward “Directed evolution of artificial metalloenzymes for in vivo metathesis“ Nature 2016, doi:10.1038/nature19114. [DOI] [More Information]
M. Hestericová, M. R. Correro, M. Lenz, P. F. Corvini, P. Shahgaldian, T. R. Ward “Immobilization of an artificial imine reductase within silica nanoparticles improves its performance“ Chem. Commun. 2016, 52:9462-65. [DOI]
S. G. Keller, A. Pannwitz, F. Schwizer, J. Klehr, O. WengerT. R. Ward “Light-driven electron injection from a biotinylated triarylamine donor to [Ru (diimine) 3] 2+-labeled streptavidin“ Org. Biomol. Chem. 2016, 14:7197-201. [DOI]
Y. OkamotoT. R. WardO. Wenger “From Photodriven Charge Accumulation to Fueling Enzyme Cascades in Molecular Factories“ Chimia 2016, 6:395. [DOI]
Y. Cotelle, N. Chuard, S. Lascano, V. Lebrun, R. Wehlauch, N. Bohni, S. Lörcher, V. Postupalenko, S. Reddy, W. Meier, C. G. Palivan, K. Gademann, T. R. WardS. Matile “Interfacing Functional Systems“ Chimia 2016, 6:418. [DOI]
P. Rottmann, T. R. WardS. Panke “Compartmentalization – A Prerequisite for Maintaining and Changing an Identity“ Chimia 2016, 6:428
M. JeschekS. PankeT. R. Ward “Chapter Twenty-Three-Periplasmic Screening for Artificial Metalloenzymes“ Methods Enzymol. 2016, 580:539-56. [DOI]
E. A. Miłopolska, M. Kuss-Petermann, M. Neuburger, O. WengerT. R. Ward “N-Heterocyclic carbene ligands bearing a naphthoquinone appendage: Synthesis and coordination chemistry“ Polyhedron 2016, 103:261-66. [DOI]
Y. Cotelle, V. Lebrun, N. Sakai, T. R. WardS. Matile “Anion‑π Enzymes“ ACS Cent. Sci. 2016:DOI: 10.1021/acscentsci.6b00097. [DOI] [More Information]
Y. Okamoto, V. Köhler, C. E. Paul, F. Hollmann, T. R. Ward “Efficient In Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme“ ACS Catal. 2016, 6:3553. [DOI]
Y. Okamoto, V. Köhler, T. R. Ward “An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades“ J. Am. Chem. Soc. 2016, 138:5781. [DOI]
H. Mallin, M. Hestericová, R. Reuter, T. R. Ward “Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology“ Nat. Protoc. 2016, 11:835. [DOI]
Y. Cotelle, S. Benz, A. Avestro, T. R. Ward, N. Sakai, S. Matile “Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces“ Angew. Chem. Int. Ed. 2016, 55:4275. [DOI]
T. Heinisch, M. Pellizzoni, M. Dürrenberger, C. E. Tinberg, V. Köhler, J. Klehr, D. Häussinger, D. Baker, T. R. Ward “Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design“ J. Am. Chem. Soc. 2016, 137:10414. [DOI]
A. Chatterjee, H. Mallin, J. Klehr, J. Vallapurackal, A. D. Finke, L. Vera, M. Marsh, T. R. Ward “An enantioselective artificial Suzukiase based on the biotin–streptavidin technology “ Chem. Sci. 2016, 7:673. [DOI]
R. Reuter, T. R. Ward “Profluorescent substrates for the screening of olefin metathesis catalysts“ Beilstein J. Org. Chem. 2015, 11:1886-92. [DOI]
T. Heinisch, T. R. Ward “Latest Developments in Metalloenzyme Design and Repurposing“ Eur. J. Inorg. Chem. 2015, 2015:3406-18. [DOI]
J. Zhao, A. Kajetanowicz, T. R. Ward “Carbonic anhydrase II as host protein for the creation of a biocompatible artificial metathesase“ Org. Biomol. Chem. 2015, 13:5652-55. [DOI]
N. Fujieda, J. Schätti, E. Stuttfeld, K. Ohkubo, T. Maier, S. Fukuzumi, T. R. Ward “Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding“ Chem. Sci. 2015, 6:4060. [DOI]
T. Quinto, D. Haussinger, V. Kohler, T. R. Ward “Artificial metalloenzymes for the diastereoselective reduction of NAD(+) to NAD(2)H“ Org. Biomol. Chem. 2015, 13:357-60. [DOI]